自我监督的学习算法包括BERT和SIMCLR,在自然语言处理,计算机视觉和语音处理等领域中启用了重要的进步。然而,这些算法是特定于域的,这意味着必须为每个新设置开发新的自我监督的学习算法,包括Myriad Healthcare,Scientific和多模域。为了促进朝向域 - 无症方法的进展,我们介绍了DABS:一个用于自我监督学习的领域 - 不可知基准。为了在DAB上表现良好,在七种不同域名评估算法:自然图像,多通道传感器数据,英语文本,语音记录,多语言文本,胸部X射线和图像,具有文本描述。每个域都包含一个未标记的预先预订的未标记数据集;然后基于其在域中的一组标记任务上的下游性能来评分模型。我们还展示了E-Mix和Shed:两个基线域名 - 不可止结算法;它们相对适度的性能表明,在自我监督学习之前需要取得重大进展是任意域的开箱即用解决方案。基准数据集和基线算法的代码可在https://github.com/alextamkin/dabs上获得。
translated by 谷歌翻译
This paper studies how to flexibly integrate reconstructed 3D models into practical 3D modeling pipelines such as 3D scene creation and rendering. Due to the technical difficulty, one can only obtain rough 3D models (R3DMs) for most real objects using existing 3D reconstruction techniques. As a result, physically-based rendering (PBR) would render low-quality images or videos for scenes that are constructed by R3DMs. One promising solution would be representing real-world objects as Neural Fields such as NeRFs, which are able to generate photo-realistic renderings of an object under desired viewpoints. However, a drawback is that the synthesized views through Neural Fields Rendering (NFR) cannot reflect the simulated lighting details on R3DMs in PBR pipelines, especially when object interactions in the 3D scene creation cause local shadows. To solve this dilemma, we propose a lighting transfer network (LighTNet) to bridge NFR and PBR, such that they can benefit from each other. LighTNet reasons about a simplified image composition model, remedies the uneven surface issue caused by R3DMs, and is empowered by several perceptual-motivated constraints and a new Lab angle loss which enhances the contrast between lighting strength and colors. Comparisons demonstrate that LighTNet is superior in synthesizing impressive lighting, and is promising in pushing NFR further in practical 3D modeling workflows. Project page: https://3d-front-future.github.io/LighTNet .
translated by 谷歌翻译
多模式情感分析由于其在多模式相互作用中的信息互补性而具有广泛的应用。以前的作品更多地着重于研究有效的联合表示,但他们很少考虑非峰值提取和多模层融合的数据冗余性的不足。在本文中,提出了一个基于视频的跨模式辅助网络(VCAN),该网络由音频特征映射模块和跨模式选择模块组成。第一个模块旨在大大提高音频功能提取的特征多样性,旨在通过提供更全面的声学表示来提高分类精度。为了授权该模型处理冗余视觉功能,第二个模块是在集成视听数据时有效地过滤冗余视觉框架的。此外,引入了由几个图像分类网络组成的分类器组,以预测情感极性和情感类别。关于RAVDESS,CMU-MOSI和CMU-MOSEI基准的广泛实验结果表明,VCAN明显优于提高多模式情感分析的分类准确性的最新方法。
translated by 谷歌翻译
图像颜色协调算法旨在自动匹配在不同条件下捕获的前景图像的颜色分布和背景图像。以前的基于深度学习的模型忽略了两个对于实际应用至关重要的问题,即高分辨率(HR)图像处理和模型的可理解性。在本文中,我们提出了一个新型的深层综合颜色滤波器(DCCF)学习框架,用于高分辨率图像协调。具体而言,DCCF首先将原始输入图像列为其低分辨率(LR)对抗零件,然后以端到端的方式学习四个人类可理解的神经过滤器(即色相,饱和,饱和,价值和细心的渲染过滤器),最终以将这些过滤器应用于原始输入图像以获得统一的结果。从可理解的神经过滤器中受益,我们可以为用户提供一个简单而有效的处理程序,以便用户与Deep Model合作,以便在必要时很少努力获得所需的结果。广泛的实验证明了DCCF学习框架的有效性,并且它在IHARMONY4数据集上的最先进的后处理方法优于图像的全分辨率,分别在MSE和PSNR上实现了7.63%和1.69%的相对改进,从而超过了图像的全分辨率。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
translated by 谷歌翻译